A New Type of Proton Coordination in an F1Fo-ATP Synthase Rotor Ring

نویسندگان

  • Laura Preiss
  • Özkan Yildiz
  • David B. Hicks
  • Terry A. Krulwich
  • Thomas Meier
چکیده

We solved the crystal structure of a novel type of c-ring isolated from Bacillus pseudofirmus OF4 at 2.5 A, revealing a cylinder with a tridecameric stoichiometry, a central pore, and an overall shape that is distinct from those reported thus far. Within the groove of two neighboring c-subunits, the conserved glutamate of the outer helix shares the proton with a bound water molecule which itself is coordinated by three other amino acids of outer helices. Although none of the inner helices contributes to ion binding and the glutamate has no other hydrogen bonding partner than the water oxygen, the site remains in a stable, ion-locked conformation that represents the functional state present at the c-ring/membrane interface during rotation. This structure reveals a new, third type of ion coordination in ATP synthases. It appears in the ion binding site of an alkaliphile in which it represents a finely tuned adaptation of the proton affinity during the reaction cycle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Bacterial Virulence Protein Promotes Pathogenicity by Inhibiting the Bacterium’s Own F1Fo ATP Synthase

Several intracellular pathogens, including Salmonella enterica and Mycobacterium tuberculosis, require the virulence protein MgtC to survive within macrophages and to cause a lethal infection in mice. We now report that, unlike secreted virulence factors that target the host vacuolar ATPase to withstand phagosomal acidity, the MgtC protein acts on Salmonella's own F1Fo ATP synthase. This comple...

متن کامل

Assembly of the rotor component of yeast mitochondrial ATP synthase is enhanced when Atp9p is supplied by Atp9p-Cox6p complexes.

The Atp9p ring is one of several assembly modules of yeast mitochondrial ATP synthase. The ring, composed of 10 copies of Atp9p, is part of the rotor that couples proton translocation to synthesis or hydrolysis of ATP. We present evidence that before its assembly with other ATP synthase modules, most of Atp9p is present in at least three complexes with masses of 200-400 kDa that co-immunopurify...

متن کامل

Inhibition of ATP Hydrolysis by Thermoalkaliphilic F1Fo-ATP Synthase Is Controlled by the C Terminus of the ε Subunit

The F1Fo-ATP synthases of alkaliphilic bacteria exhibit latent ATPase activity, and for the thermoalkaliphile Bacillus sp. strain TA2.A1, this activity is intrinsic to the F1 moiety. To study the mechanism of ATPase inhibition, we developed a heterologous expression system in Escherichia coli to produce TA2F1 complexes from this thermoalkaliphile. Like the native F1Fo-ATP synthase, the recombin...

متن کامل

The Saccharomyces cerevisiae F1FO ATP synthase peripheral stalk is composed of the OSCP, h, d, and b subunits

The Saccharomyces cerevisiae F1FO ATP synthase peripheral stalk is composed of the OSCP, h, d, and b subunits. The b subunit has two membrane spanning domains and a large hydrophilic domain that extends along one side of the enzyme to the top of F1. In contrast, the Escherichia coli peripheral stalk has two identical b subunits, and subunits with substantially altered lengths can be incorporate...

متن کامل

Selective ATP hydrolysis inhibition in F1Fo ATP synthase enhances radiosensitivity in non-small-cell lung cancer cells (A549)

BACKGROUND F1Fo-ATP synthase (F1Fo-ATPase) is a reversibly rotary molecular machine whose dual functions of synthesizing or hydrolyzing ATP switch upon the condition of cell physiology. The robust ATP-hydrolyzing activity occurs in ischemia for maintaining the transmembrane proton motive force of mitochondria inner membrane, but the effect of F1Fo-ATPase on X-ray response of non-small-cell lung...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2010